The electrostatic surface waves on semi-bounded quantum electron-hole semiconductor plasmas are studied within the framework of the quantum hydrodynamic model, including the electrons and holes quantum recoil effects, quantum statistical pressures of the plasma species, as well as exchange and correlation effects. The dispersion characteristics of surface electrostatic oscillations are investigated by using the typical values of GaAs, GaSb and GaN semiconductors. Numerical results show the existence of one low-frequency branch due to the mass difference between the electrons and holes in addition to one high-frequency branch due to charge-separation effects.