May 24, 2024
Shoaib Khanmohammadi

Shoaib Khanmohammadi

Academic rank: Associate professor
Address: Department of Mechanical Engineering, Kermanshah University of Technology, Kermanshah, Iran
Education: Ph.D in Mechanical Engineering
Phone: 0833-8305001
Faculty: Faculty of Engineering


Tri-objective optimization of a hybrid solar-assisted power-refrigeration system working with supercritical carbon dioxide
Type Article
Solar energy, CO2, PTSC, Energy, Exergy, Tri-objective optimization
Researchers Shoaib Khanmohammadi، Onder Kizilkan، Faraedoon Waly Ahmad


The objective of current research is the optimization of a novel parabolic trough solar collector assisted power-refrigeration system. The innovative system utilizes CO2 as a working fluid, which is a natural medium and consisted of three sub-cycles: a Brayton cycle, a Rankine cycle, and a vapor compression refrigeration cycle. The main advantages of utilizing CO2 as working fluid are; available in large quantities, environmentally friendly properties such as negligible global warming potential and zero-ozone depletion, and excellent thermodynamic properties. The required heat energy demand of the system is supplied by solar energy using a PTSC. The thermodynamic performance of the system is examined in terms of energy and exergy analyses for a specified design configuration. An economic analysis of the suggested system is carried out for the optimization procedure. With the optimization results, the optimum design parameters are determined for better system operating conditions. The results of tri-objective optimization represent that the total exergy destruction rate decreased 436.7 kW regarding the basic system with the initial value of design parameters. However, the net power output of the system decreased from 353.21 kW to 280.1 kW, and the total annual cost of the system decreased from 8.215 $/h to 5.74 $/h.