May 24, 2024
Shoaib Khanmohammadi

Shoaib Khanmohammadi

Academic rank: Associate professor
Address: Department of Mechanical Engineering, Kermanshah University of Technology, Kermanshah, Iran
Education: Ph.D in Mechanical Engineering
Phone: 0833-8305001
Faculty: Faculty of Engineering


Proposal of a new parabolic solar collector assisted power-refrigeration system integrated with thermoelectric generator using 3E analyses: Energy, exergy, and exergo-economic
Type Article
Solar radiationThermoelectricExergo-economicCost rateRankine cycle, Brayton cycle
Researchers Shoaib Khanmohammadi، Farayi Musharavati، Onder Kizilkan، Dinh Duc Nguyen


In this study, a new parabolic solar collector integrated combined power and refrigeration system with the thermoelectric generator (CPR-PTSC with TEG) was proposed. The suggested system was evaluated through energy, exergy, and exergo-economic analyses, and the effect of the TEG on the power generation performance was investigated. The influences of significant parameters such as pressure ratio of supercritical Brayton cycle (BC), length of parabolic solar collector, turbine inlet pressure (TIP) of transcritical Rankine cycle (RC), compressor discharge pressure (CDP) of vapor compression refrigeration cycle (VCRC) were determined. According to the results, it was found that the integration of the thermoelectric units to the system improved the exergy performance of the system with an exergy destruction rate of 803.4 kW, where it was calculated as 821.38 kW for the system without TEG. The result of parametric analyses represented that the various system parameters have the same effects on the performance of both CPR-PTSC with and without TEG. Furthermore, with the exergo-economic analysis of CPR-PTSC with TEG, the cost of generated power for TEG I and II were determined to be 0.6311 US$/h and 2.202 US$/h, respectively, and the cooling costs were calculated as 0.994 US$/h and 0.7462 US$/kWh.