12 مهر 1401
غلامحسين روشني

غلامحسین روشنی

مرتبه علمی: دانشیار
نشانی:
تحصیلات: دکترای تخصصی / مهندسی هسته ای
تلفن:
دانشکده: دانشکده انرژی

مشخصات پژوهش

عنوان
Flow regimes classi cation and prediction of volume fractions of the gas-oil-water three-phase fow using Adaptive Neuro-fuzzy Inference System
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها
Three-phase ow Pattern recognition Volume fraction Adaptive neuro-fuzzy inference system Monte Carlo simulation
پژوهشگران غلامحسین روشنی (نفر اول)، ا کرمی (نفر دوم)، احسان ناظمی (نفر سوم)، سزار مارکوس سالگادو (نفر چهارم)

چکیده

The used metering technique in this study is based on the dual energy (Am-241 and Cs-137) gamma ray attenuation. Two transmitted NaI detectors in the best orientation were used and four features were extracted and applied to the model. This paper highlights the application of Adaptive Neuro-fuzzy Inference System (ANFIS) for identifying ow regimes and predicting volume fractions in gas-oil-water multiphase systems. In fact, the aim of the current study is to recognize the ow regimes based on dual energy broad-beam gamma-ray attenuation technique using ANFIS. In this study, ANFIS is used to classify the ow regimes (annular, strati ed, and homogenous) and predict the value of volume fractions. To start modeling, sucient data are gathered. Here, data are generated numerically using MCNPX code. In the next step, ANFIS must be trained. According to the modeling results, the proposed ANFIS can correctly recognize all the three di erent ow regimes, and other ANFIS networks can determine volume fractions with MRE of less than 2% according to the recognized regime, which shows that ANFIS can predict the results precisely.