June 19, 2024
Gholam Hossein Roshani

Gholam Hossein Roshani

Academic rank: Associate professor
Education: Ph.D in Nuclear Engineering
Faculty: Faculty ofٍٍ Electrical Engineering


Evaluation of flow pattern recognition and void fraction measurement in two phase flow independent of oil pipeline’s scale layer thickness
Type Article
Flow pattern;Scale layer;Oil pipeline;Support vector machine;Multi-layer perceptron
Researchers M. M. Roshani، giang phan، Peshawa Jammal Muhammad Ali، Gholam Hossein Roshani، Robert Hanus، trung duong، Enrico Corniani، Ehsan Nazemi، El Mostafa Kalmoun


The main objective of the present research is to combine the effect of scale thickness on the flow pattern and characteristics of two-phase flow that is used in oil industry. In this regard, an intelligent nondestructive technique based on combination of gamma radiation attenuation and artificial intelligence is proposed to determine the type of flow pattern and gas volume percentage in two phase flow independent of petroleum pipeline’s scale layer thickness. The proposed system includes a dual energy gamma source, composed of Barium-133 and Cesium-137 radioisotopes, and two sodium iodide detectors for recording the transmitted and scattered photons. Support Vector Machine was implemented for regime identification and Multi-Layer Perceptron with Levenberg Marquardt algorithm was utilized for void fraction prediction. Total count in the scattering detector and counts under photo peaks of Barium-133 and Cesium-137 were assigned as the inputs of networks. The results show the ability of presented system to identify the annular regime and measure the void fraction independent of petroleum pipeline’s scale layer thickness.