Education's evolution in the context of energy systems is essential for addressing sustainable energy challenges and developing a workforce equipped for future innovations, emphasizing both formal curricula and informal lifelong learning through successful energy case studies. As the global energy sector transforms to reduce carbon emissions and reliance on fossil fuels, innovations in renewable technologies like solar thermal are pivotal for promoting energy security and economic stability, supported by an educational foundation that fosters awareness and technical skills for sustainable development. Exposure to successful renewable energy systems, such as solar-powered refrigeration, offers an informal educational experience that enhances understanding and supports global educational goals, initiating with the innovative design and optimization of these systems using artificial intelligence (neural networks). Based on this formulation, the current article developed two sustainable energy systems by comparing the refrigeration cycles with two different operating fluids and various arrangements, and multi-objective optimization with an evolutionary genetic algorithm is performed for the proposed systems. The studied systems are refrigeration cycles using an ejector and without an ejector with two working fluids of lithium bromide and lithium chloride. The present work's main aim is to examine the working fluid and refrigeration system arrangements. Energy and economic modeling were performed for the proposed systems, and then parametric analysis and two-objective optimization were extracted. Parameters such as generator temperature, condenser temperature, absorber temperature, and evaporator temperature, which significantly impact the proposed system's performance, have been selected as decision parameters, and parametric analysis has been extracted for them. In addition to the mentioned parameters, diffusion mixing efficiency, nozzle efficiency, and heat exchanger