2024 : 11 : 21
Behzad Ghanbari

Behzad Ghanbari

Academic rank: Associate Professor
ORCID:
Education: PhD.
ScopusId:
HIndex:
Faculty: Basic and Applied Sciences
Address:
Phone:

Research

Title
Multiple localized waves to the (2+1)-dimensional shallow water waveequation on non-flat constant backgrounds and their applications
Type
JournalPaper
Keywords
the shallow water wave equation, the binary Bell polynomials, the bilinear Backlund transformation, Lax pairs, nonlinear wave
Year
2024
Journal PHYSICA SCRIPTA
DOI
Researchers Yulei Cao ، Hao Tian ، Behzad Ghanbari ، Zhao Zhang

Abstract

In this paper, a new general bilinear Bäcklund transformation and Lax pair for the (2+1)-dimensional shallow water wave equation are given in terms of the binary Bell polynomials. Based on this transformation along with introducing an arbitrary function, the multi-kink soliton, line breather, and multi-line rogue wave solutions on a non-flat constant background plane are derived. Further, we found that the dynamic pattern of line breather on the background of periodic line waves are similar to the two-periodic wave solutions obtained through a multi-dimensional Riemann theta function. Also, the generation mechanism and smooth conditions of the line rogue waves on the periodic line wave background are presented with long-wave limit method. Additionally, a family of new rational solutions, consisting of line rogue waves and line solitons, are derived, which have never been reported before. Furthermore, the present work can be directly applied to other nonlinear equations.