2024 : 11 : 22
Amin Shahsavar Goldanloo

Amin Shahsavar Goldanloo

Academic rank: Associate Professor
ORCID:
Education: PhD.
ScopusId:
HIndex:
Faculty: Faculty of Engineering
Address: Department of Mechanical Engineering, Kermanshah University of Technology, Kermanshah, Iran
Phone:

Research

Title
The numerical analysis in heat transfer, fluid flow, and irreversibility of a pin-fin heatsink under the ultrasonic vibration with different transducer power assignment scenarios
Type
JournalPaper
Keywords
Heat transfer Irreversibility analysis Numerical analysis Pin-fin heatsink Ultrasonic vibration
Year
2024
Journal Thermal Science and Engineering Progress
DOI
Researchers Amin Shahsavar Goldanloo ، Hossein Ghazizade–Ahsaee ، Ighball Baniasad Askari ، Mohammad Mehdi Rashidi

Abstract

The hydrothermal performance and entropy generation rate in a pin–fin heatsink were numerically investigated under different vibration transducer power distribution scenarios between 11 transducers located at 3 walls of the heatsink. Two cases were investigated; Case#A and Case#B which are different in 3 transducer locations on one wall of the heatsink. The highest convection coefficient (h) in Case#A was obtained for a variable power scenario, which escalated pressure drop (ΔP) by 91.94%. However, the highest h in Case#B was obtained for the constant power scenario. In addition, h, average temperature of CPU, and thermal resistance factor in Case#A are 5.84% higher than, 0.41% lower than, and 5.34% lower than those in Case#B. The PEC factor for Case#A is higher than unity (1.31) only under the constant power scenario, while the PEC of Case#B is higher than unity under different studied scenarios. Frictional irreversibility (S˙fr) for Case#A was obtained as 1.45–74.56% higher than that for Case#B due to the swirl flow generated by the high-power transducers and creating the huge velocity gradients in Case#A. Nevertheless, the high flow mixing in Case#A leads to reducing the temperature gradients against Case#B, thereby thermal irreversibility (S˙th) in Case#A is almost 7.05–19.69% lower than that of Case#B.