2024 : 11 : 22
Amin Shahsavar Goldanloo

Amin Shahsavar Goldanloo

Academic rank: Associate Professor
ORCID:
Education: PhD.
ScopusId:
HIndex:
Faculty: Faculty of Engineering
Address: Department of Mechanical Engineering, Kermanshah University of Technology, Kermanshah, Iran
Phone:

Research

Title
Experimental evaluation and development of predictive models for rheological behavior of aqueous Fe3O4 ferrofluid in the presence of an external magnetic field by introducing a novel grid optimization based-Kernel ridge regression supported by sensitivity analysis
Type
JournalPaper
Keywords
Ferrofluid Kernel ridge regression Random forest Magnetic field Viscosity
Year
2021
Journal POWDER TECHNOLOGY
DOI
Researchers Amin Shahsavar Goldanloo ، Mehdi Jamei ، Masoud Karbasi

Abstract

In the present study, experiments are performed to determine the changes in the viscosity of water-Fe3O4 magnetic nanofluid (MNF) with shear rate, nanoparticle concentration and magnetic field (MF) induction. Itwas observed that as the shear rate elevates, the MNF viscosity first diminishes and then remains almost constant. Besides, the viscosity elevated with the application of theMF and its induction and also with increasing the concentration of nanoparticles. As another novelty of this research, a novel kernel based machine learning scheme namely, grid optimization based-kernel ridge regression (Grid-KRR) modelwas developed to accurate prediction of viscosity ofwater-Fe3O4MNF based on volume fraction of nanoparticles, shear rate, andmagnitude of external MF as input features. Besides, the Randomforest (RF) and Gene expression programming (GEP) modelswere examined for validating the Grid-KRR model. The performance criteria demonstrated that the Grid-KRR outperformed the RF.