Quantum-dot cellular automata (QCA) is one of the new emerging technologies being investigated as an alternative to complementary metal oxide semiconductor technology. This paper proposes optimized one-bit full adder (FA) for implementation in QCA. The fault effects at the proposed FA outputs due to the missing cell defects are analyzed, and the test vectors for detection of all faults are identified. Also, the efficient designs of one-bit full subtractor (FS), one-bit FA/FS and four-bit carry flow adder (CFA) are presented using the proposed FA. These structures are designed and simulated using QCADesigner software. The proposed designs are compared with other previous works. In comparison with the best previous design, the proposed FA has 25% and 26% improvement in cells count and area, respectively, and it is faster. For the proposed FS, FA/FS and CFA, the obtained results confirm that these designs are more efficient in terms of area, cell count and delay. Therefore, the implementation of these designs may lead to the efficient use of the calculative unit in various applications, which may be used as a basic building block of a general purpose nanoprocessor