Research Info

Home /Design and fabrication of a ...
Title Design and fabrication of a microstrip triplexer with wide flat channels for multi-band 5G applications
Type JournalPaper
Keywords microstrip, triplexer, 5G, Compact
Abstract In this paper, a new microstrip triplexer is designed to work at 2.5 GHz, 4.4 GHz and 6 GHz for mid-band 5G applications. All channels are flat with three low group delays (GDs) of 0.84 ns, 0.75 ns and 0.49 ns, respectively. Compared to the previously reported works, the proposed triplexer has the minimum group delay. The designed triplexer has 18.2%, 13.7%, 23.6% fractional bandwidths (FBW%) at 2.5 GHz, 4.4 GHz and 6 GHz, respectively. The obtained insertion losses (ILs) are low at all channels. These features are obtained without a noticeable increase in the overall size. A novel and simple resonator is used to design the proposed triplexer, which includes two pairs of coupled lines combined with a shunt stub. A perfect mathematical analysis is performed to find the resonator behavior and the layout optimization. The type of shunt stub is determined mathematically. Also, the smallness or largeness of some important physical dimensions is determined using the proposed mathematical analysis. Finally, the designed triplexer is fabricated and measured, where the measurement results verify the simulations.
Researchers Noorlindawaty Md Jizat (Not In First Six Researchers), Abbas Rezaei (Not In First Six Researchers), Leila Nouri (Not In First Six Researchers), Maher Assaad (Not In First Six Researchers), Muhammad Akmal Chaudhary (Fifth Researcher), Lewis Nkenyereye (Fourth Researcher), MOHAMMED ABDEL-HAFEZ (Third Researcher), FARID ZUBIR (Second Researcher), Salah I. Yahya (First Researcher)