|
عنوان
|
Approximate biprojectivity of Banach algebras with respect to their character spaces
|
|
نوع پژوهش
|
مقاله چاپشده در مجله
|
|
کلیدواژهها
|
Approximate $phi$-biprojectivity, $phi$-amenability, Segal algebra, Semigroup algebra, Measure algebra
|
|
چکیده
|
In this paper we introduce approximate $\phi$-biprojective Banach algebras, where $\phi$ is a non-zero character. We show that for SIN group $G$, the group algebra $L^{1}(G)$ is approximately $\phi$-biprojective if and only if $G$ is amenable, where $\phi$ is the augmentation character. Also we show that the Fourier algebra $A(G)$ over a locally compact $G$ is always approximately $\phi$-biprojective.
|
|
پژوهشگران
|
امیر سهامی (نفر اول)، بهروز الفتیان گیلان (Behrooz Olfatian Gillan) (نفر دوم)، محمد رضا امیدی (نفر سوم)
|