04 خرداد 1403
پيوند واله شيدا

پیوند واله شیدا

مرتبه علمی: دانشیار
نشانی: کرمانشاه، دانشگاه صنعتی کرمانشاه-دانشکده مهندسی-گروه مهندسی شیمی
تحصیلات: دکترای تخصصی / مهندسی شیمی
تلفن: 083-38305004 (1166)
دانشکده: دانشکده مهندسی

مشخصات پژوهش

عنوان
A novel molecular structure-based model for prediction of CO2 equilibrium absorption in blended imidazolium-based ionic liquids
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها
CO2 solubility Ionic liquids Feed-forward neural network Radial-based function neural network Support vector machine
پژوهشگران پیوند واله شیدا (نفر اول)، پوریا حیدریان (نفر دوم)، سیدعباس رضوانی (نفر سوم)

چکیده

The present study highlights a comprehensive database including 4397 data points of CO2 equilibrium solubility measurements in the 43 different imidazolium-based ionic liquids (ILs) over a broad range of pressures and absorption temperatures. The relation between the equilibrium CO2 solubility and the molecular structure of the imidazolium-based ILs mixed with different kinds of solvents, including Diethanolamine (DEA), Methyl diethanolamine (MDEA), Diisopropylamine (DIPA), Amionomethyl propanol (AMP), and the equilibrium absorption pressure and the temperature has been accurately correlated. According to this database, a novel chemoinformatics-based descriptor model with a large number of 26 input data of structural information of all involved cation and anions and experimental conditions has been extracted. Three different machine learning methods, namely feed-forward neural network (FFNN), radial-based function neural network (RBFNN), and support vector machine (SVM), are employed to develop the derived descriptor-based model. The results of the three machine learning methods demonstrate that the prediction performance of the suggested models is quite reliable. Comparing the results indicate that the FFNN with corresponding values of RMSE = 0.071, R2 = 0.952, and MAPE = 0.544 is the best paradigm to predict the CO2 equilibrium solubility in imidazolium-based ILs.