03 تیر 1400
مجيد محدثي

مجید محدثی

مرتبه علمی: استادیار
نشانی: ایران، کرمانشاه، بزرگراه امام خمینی (ره)، دانشگاه صنعتی کرمانشاه، دانشکده مهندسی، گروه مهندسی شیمی
تحصیلات: دکترای تخصصی / مهندسی شیمی
تلفن: 083-38305000 (1167, 1058, 1025)
دانشکده: دانشکده مهندسی

مشخصات پژوهش

عنوان
Using Artificial Neural Network for Estimation of Density and Viscosities of Biodiesel–Diesel Blends
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها
ثبت نشده‌است!
پژوهشگران بیتا کرمی (نفر اول)، مجید محدثی (نفر دوم)، غلامرضا مرادی (نفر سوم)، رامین مرادی (نفر چهارم)

چکیده

In recent years, biodiesel has been considered as a good alternative of diesel fuels. Density and viscosity are two important properties of these fuels. In this study, density and kinematic viscosity of biodiesel diesel blends were estimated by using artificial neural network (ANN). A three-layer feed forward neural network with Levenberg-Marquard (LM) algorithm was used for learning empirical data (previous studies data and this study empirical data). Input data for estimating density and kinematic viscosity includes components volume fraction, temperature and pure component properties (pure density at 293.15 K and pure kinematic viscosity at 313.15 K). Results of neural network simulation for density and kinematic viscosity showed a high accuracy (mean relative error for density and kinematic viscosity are 0.021% and 0.73%, respectively).