04 خرداد 1403
بهزاد قنبري

بهزاد قنبری

مرتبه علمی: دانشیار
نشانی:
تحصیلات: دکترای تخصصی / ریاضی کاربردی
تلفن:
دانشکده: دانشکده علوم پایه و کاربردی

مشخصات پژوهش

عنوان
New exact wave solutions of the variable-coefficient (1 + 1)-dimensional Benjamin-Bona-Mahony and (2 + 1)-dimensional asymmetric Nizhnik-Novikov-Veselov equations via the generalized exponential rational function method
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها
Benjamin-Bona-Mahony, GERFM, Solitary waves
پژوهشگران بهزاد قنبری (نفر اول)، چون-کو کیو (نفر دوم)

چکیده

In this paper, the variable-coefficient (1 + 1)-dimensional Benjamin-Bona-Mahony (BBM) and (2 + 1)-dimensional asymmetric Nizhnik-Novikov-Veselov (ANNV) equations are investigated via the generalized exponential rational function method (GERFM). This paper proceeds step-by-step with increasing detail about derivation processes, first illustrating the algorithms of the proposed method and then exploiting an even deeper connection between the derived solutions with the GERFM. As a result, versions of variable-coefficient exact solutions are formally generated. The presented solutions exhibit abundant physical phenomena. Particularly, upon choosing appropriate parameters, we demonstrate a variety of traveling waves in figures. Finally, the results indicate that free parameters can drastically influence the existence of solitary waves, their nature, profile, and stability. They are applicable to enrich the dynamical behavior of the (1 + 1) and (2 + 1)-dimensional nonlinear wave in fluids, plasma and others.