May 6, 2024
Amin Shahsavar Goldanloo

Amin Shahsavar Goldanloo

Academic rank: Assistant professor
Address: Department of Mechanical Engineering, Kermanshah University of Technology, Kermanshah, Iran
Education: Ph.D in mechanical engineering
Phone:
Faculty: Faculty of Engineering

Research

Title
Multi-objective optimization of a photovoltaic thermal-compound sensible rotary heat exchanger system using exergo-economic and enviro-economic approaches
Type Article
Keywords
Building integrated photovoltaic thermal (BIPVT) Sensible rotary heat exchanger (SRHX) Multi-objective genetic algorithm optimization Exergo-economic Enviro-economic
Researchers wei he، Azeez Barzinjy، Shoaib Khanmohammadi، Amin Shahsavar Goldanloo، mohammad moghimi، Masoud Afrand

Abstract

This paper presents exergo-economic and enviro-economic assessment of a novel building integrated photovoltaic thermal-compound sensible rotary heat exchanger (BIPVT-SRHX) system. The innovative BIPVT-SRHX system preheats/precools the outdoor air in winter/summer and generates electric power. The performance of the system are analyzed from the energy/exergy viewpoints for Kermanshah, Iran climatic conditions. Then, the multi-objective genetic algorithm (MOGA) optimization is used to optimize to determine the optimum values of geometric and operating parameters in order to maximize the annual average exergo-economic and enviroeconomic aspects of the system. The considered geometric and operating parameters include the length, width and depth of the air channel located underneath the PV modules, the air mass flow rate, and the diameter, rotational velocity and length of the SRHX. Moreover, the annual performance of the optimized and nonoptimized BIPVT-SRHX systems are compared. The results showed that the annual average exergo-economic and enviro-economic aspects of the optimized BIPVT-SRHX system are 0.0076 $/annum and 246.9 kWh/$, respectively. Furthermore, it was found that the annual average enviro-economic aspect, annual average exergoeconomic aspect, and yearly sum of CO2 mitigation of the optimized BIPVT-SRHX system are respectively 36.8%, 23.1% and 37.7% higher than the non-optimized system.