29 تیر 1403
امين شهسوارگلدانلو

امین شهسوارگلدانلو

مرتبه علمی: استادیار
نشانی: دانشگاه صنعتی کرمانشاه - دانشکده مهندسی - گروه مهندسی مکانیک
تحصیلات: دکترای تخصصی / مهندسی مکانیک
تلفن:
دانشکده: دانشکده مهندسی

مشخصات پژوهش

عنوان
Experimental investigation of the effect of mechanical vibration and rotating magnetic field on the hydrothermal performance of water-Fe3O4 ferrofluid inside a rifled tube
نوع پژوهش مقاله چاپ شده
کلیدواژه‌ها
Experimental study Heat transfer Magnetic field Nanofluid Rifled tube Vibration
پژوهشگران امین شهسوارگلدانلو (نفر اول)، اقبال بنی اسد عسگری (نفر دوم)، مریم قدرت (نفر سوم)، مسلم آریجی (نفر چهارم)، ساندرو نیزتیچ (نفر پنجم)، تاسیف رحمان (نفر ششم به بعد)، زنجون ما (نفر ششم به بعد)

چکیده

Vibration can enhance the hydrothermal performance by disturbing the thermal boundary layer. Also, the magnetic field increases the ferrofluid mixing, thereby enhancing the heat transfer rate. In this study, an experimental analysis of ferrofluid flow inside a rifled tube under the vibration and rotational magnetic field (RMF) effects was conducted by considering different Reynolds numbers (Re), nanoparticle concentrations (φ), and rifled tube pitches (P). In the first stage, the effect of Re and φ on the hydrothermal performance of the system in the absence of the vibration and RMF was explored. In the second stage, the effect of vibration on the performance evaluation criterion (PEC) of the system was investigated. Finally, the RMF effect was considered. Based on the results, the system with P = 5 mm showed the highest PEC in all experiments. The highest PEC without the vibration and RMF effects was obtained as 1.62 for P = 5 mm and φ = 0% at Re = 2000. The highest PEC under the vibration effect (1.28) was also found for Re = 2000 but at φ of 2%, when the highest vibration acceleration (5 m/s2) was applied. Among the RMFs examined, the RMF with the counter clock-wise along with the counter clock-wise fluid flow inside the rifled tube resulted in the highest PEC of 1.62. RMF improved the PEC of the system from 1.28 to 1.62, corresponding to a 21.32% increase, under the vibration.