June 18, 2024

Sajad Ahmadian

Academic rank: Assistant professor
Address:
Education: Ph.D in Computer Engineering
Phone: 09188339565
Faculty: Faculty of Information Technology

Research

Title
Automated Deep CNN-LSTM Architecture Design for Solar Irradiance Forecasting
Type Article
Keywords
Convolutional long short-term memory, deep neuroevolution, evolutionary computation, solar energy forecasting.
Researchers Seyed Mohammad Jafar Jalali، Sajad Ahmadian، Abdollah Kavousi-Fard، Abbas Khosravi، Saeid Nahavandi

Abstract

Accurate prediction of solar energy is an important issue for photovoltaic power plants to enable early participation in energy auction industries and cost-effective resource planning. This article introduces a new deep learning-based multistep ahead approach to improve the forecasting performance of global horizontal irradiance (GHI). A deep convolutional long shortterm memory is used to extract optimal features for accurate prediction of the GHI. The performance of such deep neural networks directly depends on their architectures. To deal with this problem, a swarm evolutionary optimization method, called the sine-cosine algorithm, is applied and advanced to automatically optimize the network architecture. A three-phase modification model is proposed to increase the diversity of population and avoid premature convergence in the optimization mechanism. The performance of the proposed method is investigated using three datasets collected from three solar stations in the east of the United States. The experimental results demonstrate the superiority of the proposed method in comparison to other forecasting models.