April 19, 2024
Babak Aghel

Babak Aghel

Academic rank: Associate professor
Address: Department of Chemical Engineering, Faculty of Energy, Kermanshah University of Technology (KUT), Imam Khomeini Highway, Kermanshah, Iran
Education: Ph.D in Chemical Engineering
Phone: 083-38305000 (1168)
Faculty: Faculty of Engineering


Carbon dioxide desorption from aqueous solutions of monoethanolamine and diethanolamine in a microchannel reactor
Type Article
Desorption Microchannel Amine solvents Mass transfer Energy optimization
Researchers Babak Aghel، sasan sahraee، Ehsan Heidaryan


In this study, the process of carbon dioxide (CO2) desorption from two saturated solutions of monoethanolamine (MEA) and diethanolamine (DEA) was performed in a microchannel made of stainless-steel grade 316 with a circular cross-section (diameter: 800 μm, length: 35 cm). The operating variables in this study were temperature (55, 75 and 95 °C), rich solvent flow rate (0.3, 0.9 and 1.5 ml/min), and inlet solvent concentration (10, 20 and 30 wt% of the amine). The mass transfer efficiency was determined based on the desorption percentage, volumetric liquid-side mass transfer coefficient (kLaV), volumetric overall mass transfer flux (NCO2aV), and energy consumption per unit mass CO2 (R). The results showed that the use of a microchannel significantly increased the mass transfer rate and decreased energy consumption per removed CO2. The results also showed that the amount of kLaV for the two solvents of MEA and DEA was 1.91 and 3.48 1/s, respectively. Moreover, the R-value for the two solvents of MEA and DEA was 1.3 and 1.63 MJ/kg CO2, respectively, which is at least three times lower than that of other mass transfer devices.