The aim of this numerical investigation is to evaluate the laminar forced convection of biologically synthesized
water-silver nanofluid through a heat sink (HS) filledwith porous foam(PHS) using first and second laws of thermodynamics.
The impacts of inlet velocity (V=0.5–3m·s−1) and volumefraction of nanofluid (φ=0–1%) on the
performancemetrics of HS are assessed and the outcomes are comparedwith those of the non-porous HS (NHS).
The outcomes revealed that for both the PHS and NHS, the increase of V causes an intensification in convection
coefficient, pumping power, and entropy generation due to fluid friction, while the maximum CPU temperature,
thermal resistance, and entropy generation due to the heat transfer reduces by boosting V. Also, itwas found that
the augmentation of V results in intensification in convection coefficient, pumping power, overall hydrothermal
performance, and frictional entropy generation, while the opposite is true for maximum CPU temperature,
thermal resistance, and thermal entropy generation. Furthermore, it was reported that, except for φ = 0.5%,
the overall hydrothermal performance of NHS is better than that of PHS, while PHS has better second-lawperformance
than NHS in all the studied cases. Also, it can be concluded that the best hydrothermal performance for
PHS belongs to φ=1% and V = 0.5 m·s−1, while for NHS, these values are 1% and 2 m·s−1.